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We present an algorithm to predict the linear relaxation spectra for linear polymers of fully general and
arbitrary polydispersity. As is common in the tube theory descriptions of linear polymers, we assume that the
stress relaxation is affected by both the constraint release and tube escape modes, but unlike most existing
descriptions we consider how these two modes of relaxation affect each other. We argue that the proper
description for relaxation in an arbitrary blend of linear polymers requires consideration of multiple embedded
tubes affecting the different relaxation pathways; we propose a novel but minimal description involving five
embedded tubes. Building on prior work for binary blends, we derive the scaling level descriptions of the
relaxation pathways. We use a large number of existing experimental results on the stress and dielectric
relaxations to validate our model, ensuring we explore a very broad range of parameter space.

I. INTRODUCTION

The tube model of de Gennes [1] and Doi and Edwards
[2] reduces the complex many-body problem of the relax-
ation dynamics of polymer melts and concentrated solu-
tions to the relaxation of a test chain in an effective tube-
like confining potential [3–5]. Though the tube potential
in a melt is due to the chains that relax at the same
timescale as the test chain, models that assume a fixed
tube diameter yield good agreement with experimental
results for the linear viscoelastic responses of monodis-
perse polymers when contour length fluctuations (CLF)
[6, 7] are accounted for.

Since the tube potential in a melt is due to chains
that themselves are mobile, the obstacles responsible for
the entanglement constraints have finite lifetime and this
leads to constraint release (CR) [8]. Even for monodis-
perse polymers, CR plays an important role in describing
the relaxation process quantitatively. For example, the
tube model without CR cannot describe the separation
of the dielectric and orientational relaxation timescales
for type-A polymers. For monodisperse polymers, sat-
isfactory models based on tube theories that include
CR are available, with the model due to Likhtman and
McLeish [9] often considered the state-of-the-art.

The effect of CR for polydisperse melts is more pro-
nounced than in the monodisperse case: the original tube
model predicts a linear mixing rule [2] for the relaxation
function in direct contradiction to experimental findings.
Considering entanglements as binary events Tuminello
[10], Tsenoglou [11], and des Cloizeaux [12] incorporated
CR in a simple way in the “double reptation” model to
describe polydisperse polymers. The double reptation
model and its extensions give a useful tool to describe
stress relaxation in polydisperse melt with smooth molar
mass distribution, but fails for blends of sufficiently dif-
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ferent molar mass species. In particular, it assumes that
the relaxation function of a given chain length in a poly-
disperse melt is unchanged from the relaxation function
for the same chain length in a monodisperse melt. This
assumption is contradicted by experiments, especially on
bidisperse melts where long chain relaxation is often ac-
celerated upon dilution with short chains [5, 13–19].

An alternative approach to the problem is to eschew
calculations based on the tube model entirely and to re-
sort to simulations. One such method is the family of
slip-link based methods: single chain models such as the
discrete sliplink model of Schieber and co-workers [20]
and the slip-spring model of Likhtman [21]; or multi-
chain methods such as the NAPLES code [22] or multi-
chain slip-spring models [23]. Although there are differ-
ences in detail, these models all include the fundamen-
tal processes of reptation, CLF and CR. Further, once
set up and parameterised to function with monodisperse
polymers, there is essentially no change in the simulation
algorithm required to address polydisperse melts: their
relaxation is predicted without further parameter adjust-
ment. Hence, slip-link based models are becoming an ef-
ficient and practical method for prediction of rheology of
polydisperse linear polymer melts.

It may be tempting, in the light of the success of slip-
link models, to claim “job done” and to give the prob-
lem no further thought. However, even if a computa-
tional model gives perfect predictions, the task remains
to describe and quantify the nature of the polymer mo-
tion that gives rise to the successful results: how do the
processes of CR, CLF and reptation interact to give the
chain dynamics in polydisperse melts? As well as being of
academic interest, developing this insight provides routes
toward yet more efficient calculations, and for improving
on algorithms such as the Hierarchical [24], BoB [25] and
Time-Marching [26] models for branched polymer relax-
ation.

A starting point for investigation of chain dynamics of
polydisperse melts has been to study the idealised case of
a bidisperse melt. Early theoretical work by Doi et al [27]
and Viovy et al [28] was based on two competing pictures:
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Doi et al used a version of the tube dilution model in
which long chains were considered to reptate unhindered
along tubes diluted by CR from shorter chains; Viovy et
al insisted that motion along the diluted tube could only
occur at a rate dictated by the frequency of CR events.
Both pictures influenced subsequent work, for example
Park and Larson [17, 29] followed the tube dilution pic-
ture. More recent work by van Ruymbeke et al [19] and
Read et al [13, 14, 30, 31] followed more closely the Viovy
et al picture (insisting that motion along the diluted tube
is at the “rhythm of the release/formation of the short-
long entanglements” [19]) but also adding in effects of
CLF. Read et al [14, 31] also grounded their tube-based
theory by comparison to slip-spring simulations.

The model we present below makes extensive use of
the results derived in Read et al [13, 14, 31], generalising
these to include the multiple constraint release times for
for fully polydisperse systems. Our approach has been to
use this previous work to dictate the overall form of the
theoretical model we develop, but also to recognise that
most tube-based theory assumes scaling forms that apply
best when deep within one dynamical regime or another
(e.g. where chains are well entangled, or where constraint
release dominates relaxation). In practice, transitions
between different dynamical regimes are broad (see e.g.
Appendix C of [14]), and almost all experimental results
fall close to the transition from one dynamical regime to
another: hence we are required to use crossover formu-
lae that interpolate between different dynamical regimes.
The transition from entangled to unentangled behaviour
is particularly troublesome in this regard: the tube model
assumes chains have a significant number of entangle-
ments, and so (by design) does not contain the necessary
detail to “predict” what happens at the transition. This
affects both the early time behaviour of the modelling
(how to handle motion on timescales close to the entan-
glement time, τe) but also the “disentanglement” that
occurs when chains progressively relax by constraint re-
lease. Hence, in developing the model below we have
needed to find a path between pragmatism and idealism:
using the “ideal” theoretical results to guide the shape
of the model, but also pragmatically making use of ex-
perimental data to guide choices we have made in han-
dling the many crossovers between regimes. To aid this,
we make extensive comparison with experimental results,
especially on binary blends, using the two dimensional
projection of parameter space suggested by Doi et al [27]
and Viovy et al [28] to ensure we explore the broadest
variety of dynamical regimes.

The result, then, is a model that we believe is robust in
the sense that it has been tested against a wide range of
data, and is based upon recent theoretical development.
We detail the model in section II, and discuss parameter-
isation and comparison to experimental data in section
III. We conclude with a summary of the novel develop-
ments in our algorithm and with details of how the code
can be freely obtained.

II. MODEL

A. Nested tube structure

We begin with a qualitative description of our proposed
nested tube structure. Within the tube model for a poly-
mer melt, the relaxation of stress after an instantaneous
small step strain is considered to be both due to (i) the
chains exiting from the original deformed tube and so
able to relax orientation, and (ii) and due to constraint
release (CR) from relaxation of the chains responsible
for the tube constraint. We assume that the relaxation
of stress due to CR can be adequately modeled via the
dynamic dilution hypothesis [32], which connects the ef-
fective tube diameter for stress calculation to the frac-
tion of chains already relaxed in a certain time after a
step strain. However, we do not follow the subsequent
common ansatz of dynamic dilution, that chains move
freely along this dilated tube subject only to chain fric-
tion; rather we account for the extra friction arising from
CR events [28].

The two main modes of motion that allow a polymer
to escape from its tube are contour length fluctuations
of the chain ends [6] and the chain reptation [1, 2]. In
principle, constraint release affects both these modes of
motion: the chain has some freedom to relax in a wider
tube determined by the fraction of unrelaxed polymers.
Yet, motion along different tube diameters impose dif-
ferent friction constants and as a result there are op-
timal choices of tube diameter for these two relaxation
pathways. Figure 1 shows what we consider is a mini-
mal model for describing the relaxation in a system with
wide spectrum of constraint release timescales. It depicts
a number of nested tubes, the meaning of which we now
describe.

We begin with three “tube diameters” whose descrip-
tion will be familiar to those who have dealt with pre-
vious tube theories based on dynamic dilution. At the
timescale τe, the entanglement time or the equilibration
time, a polymer chain represented by the gray wiggly
line is confined in the thin tube of diameter a0. The
thin tube determines the plateau modulus and the early
time relaxation. At a later time, the ‘fat’ tube diam-
eter aF is determined by the fraction of chains yet to
escape by reptation or contour length fluctuation from
their original tubes; this fat tube is thus the largest tube
a test chain could possibly explore whilst confined by
its entanglements with currently unrelaxed chains. How-
ever, the rate of exploration of the fat tube is limited
by friction arising from faster constraint release events:
the thin tube undergoes “constraint release Rouse mo-
tion” but with typically a broad spectrum of constraint
release rates. This CR motion allows the chain to re-
lax stress coming from chain subsections up to a “super-
tube” diameter aST ≤ aF, depicted in Figure 1 by the
arrows indicating hops of the thin tube. So, in previous
works on tube theory, aST determines stress relaxation
from constraint release. For a sufficiently broad spec-
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FIG. 1. Multiple embedded tubes required to describe the relaxation of a test chain in an entangled polymer liquid.

trum of constraint release times, the fat tube diameter
increases slowly and aST = aF. However, if a large frac-
tion of the polymers escape their tubes at similar times,
then aF increases sharply, but the rate of increase of aST

is limited to a power law commensurate with CR Rouse
motion, until it “catches up” with aF. These three “tube
diameters” have been commonly used in many publica-
tions on tube theory, see e.g. [5, 24, 25, 33, 34]. We
retain this broad picture, but with some modification to
the details as indicated below.

We now introduce two further “tube diameters”, also
depicted in Figure 1, which we consider are necessary for
a full description. As noted above, chain motion along
tubes of different diameters is subject to different friction.
At the smallest scale, motion along the thin tube a0 is
subject only to the chain friction. Motion directly along
the primitive path of any larger tube diameter is only
possible via constraint release events, and so is subject
to the friction arising from these CR events. Typically,
exploration of wider tubes requires slower CR events, and
so is subject to greater friction. On the other hand, the
primitive path of wider tubes is smoother and shorter: a
chain does not need to travel so far along a wider tube
to achieve the same overall (3D) displacement. There is
thus a competition between motion along thinner tubes
(lower friction but a more tortuous path) and wider tubes
(higher friction but smoother path). In principle, mo-
tion along all tube diameters occurs simultaneously, but
we simplify the picture by seeking the optimal tube for
chain transport “along” the nested tube structure. This
optimal tube determines the fastest route for reptation
and is shown in Figure 1 as the tube with arrows along
the tube contour, with tube diameter aT.

We finally define an “equilibration” tube diameter, aeq.

In past works on binary blends, consideration of con-
tour length fluctuations (CLF) has noted the require-
ment to make a distinction between (i) the tube diam-
eter for fastest chain transport along the tube detailed
above, and (ii) the tube diameter within which the chain
has freedom to retract. The latter requires only a lo-
cal equilibration in the tube, whilst the former involves
large scale chain transport from one section of tube to
another. The physical picture is that local rearrange-
ments of the tube structure give rise to local fluctuations
in tube length, giving the necessary freedom for CLF;
these then couple to chain transport along the tube, giv-
ing rise to the actual CLF. For example, in many binary
blends chain transport is fastest along the thin tube, yet
CR events permit local equilibration in the fat tube, and
so “fat tube” CLF (i.e. to a depth permitted by fat tube
constraints) is achieved in practice via chain transport
along the thin tube [13, 14, 31]. It should be clear from
the above that the tube diameter aT determines the op-
timal mode for chain transport along the tube for CLF
(as well as for reptation). Yet, we still need to consider
which tube diameter gives freedom for local equilibration,
specifically for CLF. A first (and good) guess would be
the supertube diameter aST within which local stress re-
laxation occurs. We note, however, that the equilibration
process we are discussing is distinct from the orientation
relaxation required for stress relaxation, and potentially
requires a greater number of CR events to achieve. So,
whilst obviously being related to the same CR events, it
may have slower dynamics. We thus propose a further
tube diameter aeq, defined as the tube diameter within
which CLF has freedom to occur at any given timescale.
Evolution of aeq with time is naturally driven by the same
events as for aST and so (as will be apparent below) our
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suggested dynamics for the two are closely related. Our
(very much pragmatic) reasons for distinguishing the “su-
pertube” from the “equilibration tube” are that (i) they
are not a priori obviously the same, (ii) comparison of
our theory with a wide range of experimental data sug-
gested a need to distinguish them and (iii) we realised
that previous work examining the theoretical description
of CLF in slip-spring simulations with CR also made use
of two different tube diameters in this way, even though
it was not noted or explicitly discussed [14].

Finally, we note that each of the tube diameters aI
described above (where I could be fat tube, supertube,
etc) may be related to an associated level of dilution φI
via an equation of form aI = a0φ

−α/2
I where α is the

dilution exponent, e.g. aST and φST are related via

aST(t) = a0φ
−α/2
ST (t). (1)

Having now qualitatively described our proposed
nested tube structure, we now proceed to the techni-
cal details of how to track these various tube diameters
within a computational algorithm, and how we use them
to obtain the relaxation modes of the chains. A reader
not interested in these technical details could proceed to
the results in section III.

B. Stress relaxation and tube escape

We assume that the stress relaxation modulus G(t) can
be expressed as a product of a term µ(t) characterizing
the tube survival probability and a term R(t) character-
izing the constraint release contribution as

G(t) = G0
N µ(t)R(t), (2)

with G0
N being the plateau modulus. For a multicom-

ponent melt, direct determination of µ(t) and R(t) is
difficult. Instead, in a manner similar to previous works
on branched polymers [24–26], for each polymer compo-
nent i we track the amount of chain end escaped from
the original tube, zi(t) (counted in units of thin tube en-
tanglements). We then express the fraction of material
still confined in the deformed tubes as

φ(t) =
∑
i

wi

(
1− 2zi(t)

Zi

)
. (3)

Here, wi is the weight fraction of the i-th component with
total number of entanglement Zi, and the sum is over all
the different components. Our computational scheme is
made self consistent by computing the relaxation dynam-
ics of individual chains zi(t) based on the mean field φ(t),
which is determined itself from Eq. 3.

We assume that the reduction of the tube survival
probability µ(t) from a change in φ at time t = τ is
not instantaneous, but has an exponential distribution
about τ , and can be expressed as

µ(t) = −
∫ ∞

0

dφ

dτ
e−t/τdτ. (4)

Computationally this assumption leads to the simplifi-
cation that reptation can be considered as a single time
event in relaxation of φ(t), while retrieving the proper
reptation spectrum in the final calculation for the relax-
ation moduli via µ(t). When predicting dielectric relax-
ation of polyisoprene below, we assume that the dielectric
relaxation is proportional to µ(t).

In a similar manner, we obtain the constraint release
term R(t) from the “supertube fraction” φST (see Eq. 1)
as:

R(t) = −
∫ ∞

0

dφαST
dτ

e−t/τdτ. (5)

We detail later how φST is obtained within our compu-
tational scheme. As in the calculation of µ(t), the expo-
nential distribution in the calculation of R(t) allows for a
simple accounting of multiple constraint release events in
a blend. The Maxwell forms of µ(t) and R(t) also enable
us to sample discrete time relaxation in logarithmically
spaced time intervals without introducing spurious high
frequency oscillations in the dynamic moduli.

Readers familiar with previous works on prediction of
branched polymer rheology [5, 24, 25, 33–35] may note
that the above scheme for calculating stress relaxation
differs from those earlier works. The formula for stress
relaxation proposed by Milner, McLeish and co-workers
[33–35] and used in later computational schemes (includ-
ing by us) [24, 25] was:

G(t) = −G0
N

∫ ∞
0

d (φφαST)

dτ
e−t/τdτ. (6)

Our reason for setting Eq. 6 aside in the current work is
(as detailed in Appendix A) that it is inconsistent with
double reptation for binary blends, resulting the impos-
sibility of successful simultaneous prediction of dielectric
and stress relaxation data.

In the rest of this section we develop scaling level ar-
guments for the relaxation of z(t) and φST(t).

C. Constraint release and the evolution of the supertube
fraction

As common with existing theories [5, 9, 13, 14, 28, 31,
33, 34], we model constraint release as a Rouse relaxation
process. Before formulating a theory for a broad spec-
trum of CR timescales, we consider first the highly ideal-
ized case of a single, slow, constraint release timescale of
τCR � τe. The effective friction per monomer from the
constraint release hops is determined by the timescale
τCR, and is expressed as

ζCR
ζ0

= Aζ
τCR
τe

, (7)

where ζ0 is the bare monomer friction, and Aζ is a scal-
ing parameter found to be substantially smaller than 1
in slip-spring simulations [31]. In general, both bare
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monomer friction and constraint release friction con-
tribute to relaxation behaviour and we denote the total
friction as ζtot ≡ ζCR + ζ0. The long time behaviour
of R(t) can be deduced from the stress relaxation of the
usual Rouse model by replacing the monomer friction
with ζtot as

φαST (t) ' R(t) =

√
π

8

√
ζtot
ζ0

τe
t

=

√
π

8
Aζ

√
1 +

1

Aζ

τe
τCR

√
τCR
t
. (8)

where the prefactor
√

π
8 comes from the relaxation mod-

ulus G(t) from solution of the standard Rouse model.
Concentrating on the limiting case of τCR � τe such

that the monomer friction can be ignored, extrapolating
this long-time power-law form of φST back to time t =
τCR yields

φST (τCR) '
[π

8
Aζ

] 1
2α ≡ 1− δ∞CR, (9)

whereas, for t < τCR, no relaxation by CR has occurred
and φST = 1. Comparing these two suggests that φST
should remain equal to 1 for t < τCR, then drop by a frac-
tion δ∞CR at t = τCR, before relaxing via the power-law
Eqn. 8 for t > τCR. Substitution into Eqn. 5 yields, for
R(t), an exponential relaxation with timescale t = τCR
followed by long-time power-law decay. The physical ba-
sis for this is that constraint release events involve sub-
stantial local changes in tube configuration: they are
finite-sized hops of order the tube diameter occurring at
timescale τCR. Hence, a substantial relaxation occurs
at τCR, followed by the power law relaxation from the
summed effect of multiple tube hops over much larger
lengthscales. This is in contrast to the standard Rouse
model (for a chain, rather than a tube) in which the
stochastic diffusive bead motion is continuous, involving
infinitesimal hops rather than finite hops. So, for tube
motion at timescale τCR it is not appropriate to imme-
diately apply the power law decay based on the Rouse
model; rather, there should be a drop in φST at τCR fol-
lowed by a power law decay.

We note that the above result is different from the
standard assumption in several existing models about the
supertube relaxation (e.g. our own [25]) in which φST
undergoes power-law decay from initial value φST = 1 at
t = τCR (i.e. without the drop by δCR). In the present
work we have found that this drop, combined with the
formulation of G(t) in Eqn. 2, is crucial in reconciling
the differences in the relaxation timescales observed in
the rheological and dielectric responses of monodisperse
melts and binary blends.

The above applies when τCR � τe. As τCR approaches
τe, the monomer friction becomes significant compared
to friction from CR hops, and reduces the rate of diffu-
sion from CR events. As a result, φST does not drop
so strongly at t = τCR before attaining the power law

Rouse relaxation. We account for this by making the
“drop” δCR dependent on τCR as:

δCR(τCR) = 1− [1− δ∞CR]

√
1 +Kζ

τe
τCR

(10)

where the form of the last term is inspired by the balance
of CR and monomer friction in Eqn. 8. Since the tube
picture emerges only for t ' τe, we assume φST = 1 for
t < τe. To have the correct response from solvent, we
enforce δCR(τCR = τe) = 0 in Eqn. 10 which fixes Kζ in
terms of the parameter δ∞CR to be

Kζ =
1

(1− δ∞CR)
2 − 1. (11)

We now consider a generic polymer melt, in which
there will typically be a spectrum of constraint release
timescales. Our strategy is to treat the unrelaxed fraction
φ(t) as the primary dynamical variable, which decreases
as chains escape their tube by reptation and contour
length fluctuation. But, such tube escape also gives rise
to constraint release, so the variation of φ(t) also encodes
the spectrum of constraint release times: we need to de-
termine how the decrease of φ(t) gives rise to the varia-
tion of φST (t). A slow decrease in φ(t) indicates a suffi-
ciently broad distribution of constraint release timescales
(to be quantified below) so that we can assume that the
double reptation picture holds and φST (t) = φ(t). Yet,
a more rapid decrease in φ(t) (e.g. when many chains
reptate at the same time) indicates a substantial amount
of constraint release occurring at a single timescale and
this causes an entry into a “supertube relaxation” regime
with quasi-power law decay of φST (t) subject to con-
straint φST (t) ≥ φ(t).

We work within a discrete time stepping scheme, in
which φ(t) decreases by ∆φ during time step ∆t. Con-
sider a certain time t∗ at which this change takes place
during the next step. We denote the value of φST im-
mediately preceding t∗ as φ∗ST . In Eqn. 9, where all con-
straints relaxed at the same time, the drop in φST was
δ∞CR. If only a fraction ∆φ constraints are removed, then
φST would be immediately reduced by δ∞CR∆φ (i.e. in
proportion to the number of constraints removed). This
applies if t∗ � τe; for general t∗ we instead use δCR as
obtained from Eqn. 10 evaluated at τCR = t∗. Following
the drop in φST , there follows a power law decay accord-
ing to Rouse scaling, so that at the end of the timestep

φαST (t∗ + ∆t) =
[
φ∗ST − δCR∆φ

]α√ t∗

t∗ + ∆t
. (12)

We then enforce the constraint φST (t) ≥ φ(t). If the
value of φST (t∗+ ∆t) resulting from Eqn. 12 is less than
φ(t∗+∆t) = φ(t∗)−∆φ, then we enforce φST (t∗+∆t) =
φ(t∗ + ∆t), i.e. the relaxation is not in the “supertube
relaxation” regime and φST (t) = φ(t). On the other
hand, if φST (t∗ + ∆t) is greater than φ(t∗ + ∆t) then we
move to the next timestep without adjusting φST : here
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FIG. 2. Schematic representation of the change in φST in a
single timestep. Both the axes are in logarithmic scale. Two
scenarios are indicated. For the solid green line φST (t) > φ(t)
at the end of the timestep and the simulation remains in the
supertube regime; for the dashed red line φST (t) = φ(t) is
enforced at the end of the timestep.

we are in the supertube regime and φST (t) > φ(t). A
sketch of the variation in φST during a single timestep
is shown in Fig. 2, indicating the two possible scenarios.
For the solid green line φST (t) > φ(t) at the end of the
timestep and the simulation remains in the supertube
regime; for the dashed red line φST (t) = φ(t) is enforced
at the end of the timestep.

Now we can quantify what counts as sufficiently slow
decrease of φ(t) to avoid entering the “supertube” regime.
Considering a discrete time interval ∆t, a supertube re-
laxation regime is initiated if

∆φ > φ∗ST

1−
(

t∗

t∗+∆t

)1/2α

1− δCR
(

t∗

t∗+∆t

)1/2α
. (13)

We note that Eqn. 12 is applied even within the su-
pertube relaxation regime. Thus, if further reductions of
φ occur during supertube relaxation, by an amount ∆φ
during time step ∆t, then the instantaneous reduction
of φST by δCR∆φ is still applied. Hence, in this scheme
supertube relaxation is not a pure power-law decay, be-
cause it continues to be affected by further reductions in
φ. This is necessary so that the relaxation predicted by
drops of ∆φ1 and ∆φ2 over two subsequent timesteps is
practically equivalent to that from a drop of ∆φ1 + ∆φ2

all applied over a single timestep (i.e. so that the scheme
is insensitive to the chosen discretisation of time). It can
also be argued on physical grounds: extra constraint re-
lease events still produce extra hops in tube configuration
even in the supertube regime.

The above indicates how φST (t) may be obtained from
φ(t) within an algorithm based on a discrete timestep. To
complete the algorithm we need to compute φ(t) arising
from chain reptation and contour length fluctuation. For

this, we note that φST (t) (or aST (t)) encodes how far a
chain trapped in a tube can move via constraint release,
i.e it indicates the effective friction for constraint release
events acting at different lengthscales, which is required
for prediction of reptation and contour length fluctuation
along tubes of different diameter.

For chain motion along a tube with diameter aST (de-
termined from φST ) we associate an effective friction
constant per monomer by inverting the first equality in
Eqn. 8, giving(

ζtot
ζ0

)
|aST

= Bζ
t(φST )

τe
φ2α
ST . (14)

Here, t(φST ) is the time at which φST (t) reaches a given
value corresponding to diameter aST via Eqn. 1. We
have introduced an order one constant Bζ . If φαST (t)
were to behave identically as R(t), Bζ ' 8

π - but in prac-
tice φαST (t) and R(t) are not identical and we fixed Bζ
at a value close to 8

π that gave good predictions across
a wide range of data. Note that the friction obtained
from Eqn. 14 is valid only for t � τe and we assume
that φST (t) = 1 for t ≤ τe (i.e. the supertube diameter
remains identical to the thin tube diameter for t ≤ τe).

As time t increases (as does aST (t)), φST (t) decreases.
Then, Eqn. 14 allows us to evaluate the effective friction
for motion along tubes at each diameter. So, Eqn. 14
is evaluated at each time, t, yielding the effective fric-
tion per monomer for motion along tubes with diame-
ter aST (t). This information is then used to determine
the subsequent relaxation dynamics of the chains, from
which we update φ(t). Given the update of φ(t), we then
update φST (t) as indicated above; these steps form a self-
consistent iterative loop to update all variables at each
increment of time.

D. “Equilibration” tube diameter

As noted in section II A, we define an “equilibration”
tube diameter, aeq, which is the largest tube diameter
within which contour length fluctuations can be consid-
ered, and also sets a maximum accessible tube for repta-
tion to be considered. We argue that it takes a number of
constraint release hops up to a given lengthscale before
the tube is sufficiently equilibrated at that scale, such
that translational motion along that tube diameter can
occur. Again, we consider the long-time situation first, in
which t � τe. Equation 14 gives the effective total fric-
tion per monomer at the scale of a tube diameter aST .
We can define a Rouse “equilibration time” by scaling up
from the bare entanglement time τe to the scale of aST ,
accounting for the extra effective friction:

τe,aST = τe

(
ζtot
ζ0

)
|aST

φ−2α
ST . (15)

Using Equation 14 gives:

τe,aST = Bζt(φST ). (16)
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This simply serves to illustrate that although local equi-
libration and stress relaxation are linked, it would be a
mistake simply to define equilibration time from dynam-
ics of φST without further consideration. WithBζ ' 8/π,
it suggests “equilibration” at scale aST is delayed as com-
pared to the stress relaxation.

The scaling level description, especially the expression
for the friction coefficient in Eqn. 8 holds only for t� τe.
Simulations with slip-spring models show that fast con-
straint release (τCR ∼ τe) introduces significantly larger
friction for diffusion than the linear form in Eqn. 8 would
predict [31]. We heuristically account for these by allow-
ing φST to relax only for t ≥ τe and using a modified
expression for the equilibration time as

τe,aST = Aeqt(φST )

(
1 +Beq

√
τe

t(φST )

)
. (17)

Here, Aeq ' Bζ , and the new parameter Beq further
delays equilibration at short times and forces CLF in the
thin tube at short times. The particular form in Eqn.17 is
motivated by the expression of constraint release friction
from slip-spring simulations [31] and physically accounts
for the influence of the chain friction on hop lengths.

Consider a particular time, t∗: we first obtain φST (t∗)
as detailed above in section II C, i.e. t(φST ) = t∗. We
then use Eqn. 17 to determine the equilibration time
τe,aST for that level of dilution. Hence, the time at which
φeq will (later) become equal to φST (t∗) is τe,aST , i.e.
φeq(t = τe,aST ) = φST (t∗). Noting that τe,aST > t∗, this
process allows us to predict, and store, the evolution of
φeq(t) into the immediate future beyond current time t∗.

Now, at current time t∗ we also need the current value
of φeq(t = t∗), which is required to determine the sub-
sequent evolution of φ(t) as detailed below. But since
φeq(t) has been stored from previous timesteps, we are al-
ways able to determine φeq(t

∗) by interpolation between
the previously stored data.

E. Reptation

Diffusion along fatter tubes requires a larger friction
constant (due to longer constraint release times) but in-
volves motion over shorter contour lengths. The competi-
tion between these determines the optimal tube diameter
that is most advantageous for reptation. We assume that
motion along a single tube diameter, aT (t), contributes
overwhelmingly in the reptation relaxation at time t. To
determine aT (t), we calculate the reptation time in all
accessible tubes, i.e. tubes with a ≤ aeq(t), and select
the one with lowest predicted reptation time.

To estimate the friction coefficient appropriate for mo-
tion along tube of diameter aST , we calculate the con-
straint release contribution to the friction from Equa-
tion 14 as ζtot − ζ0 = ζ0(Bζ

t
τe
φ2α
ST − 1). This constraint

release allows motion directly along the tube at diameter
aST . We additionally include the contribution of free dif-
fusion along the bare tube (of diameter a0) projected onto

the scale aST (such free diffusion always occurs, even in
the absence of constraint release). To calculate the sum
of free diffusion along thin tube and constraint release dif-
fusion along tube of diameter aST , we follow Read et al
[13] using their form for the friction coefficient for trans-
lational diffusion as(

ζT
ζ0

)
|aST

=
1

φαST + 1/
[
Bζ

t(φST )
τe

φ2α
ST − 1 + 1

1−φαST

] .
(18)

Then the time-scale of reptation in aST at some time
t ≥ τe,aST is given by

τd,aST (t) =
NζT
π2kBT

{
φαST (Z − 2z(t))

2
a2

0

}
= 3Z (Z − 2z(t))

2
τeφ

α
ST

(
ζT
ζ0

)
|aST

≡ τd,a0Ψ(aST ). (19)

Here we have included the reduction in the diffusion
length from contour length fluctuations achieved in time
t, and τd,a0 ≡ 3Z (Z − 2z(t))

2
τe refers to the reptation

time in the thin tube with the same reduction in the
diffusion length from CLF. The factor

Ψ(aST ) = φαST

(
ζT
ζ0

)
|aST

(20)

gives the amount by which reptation enhanced by CR
along some tube aST is faster than purely along the thin
tube.

To find the optimal tube for reptation at some time
t, we consider reptation along all tubes of diameter
aST < aeq(t) (noting that the time t1 = t(φST ) at which
the supertube diameter reached aST is certainly earlier
than t). The minimum of Ψ(aST ) over a0 < aST < aeq(t)
is denoted Ψmin(t), and this determines the tube diam-
eter with the shortest reptation time, i.e. the optimal
reptation time at time t is

τd(t) = τd,a0Ψmin(t). (21)

We denote the tube diameter associated with the mini-
mum of Ψ(aST ) as aT , with corresponding dilution φT .

A further point is necessary here: during “supertube”
relaxation (i.e. when φST (t) > φ(t)) we keep Ψmin(t)
constant at its initial value from the start of the super-
tube relaxation. Our picture of constraint release Rouse
relaxation is that of a thinner tube exploring the current
fat tube via constraint release while keeping the thinner
tube diameter constant: stress decay from CR is handled
here by the time evolution of φST . Allowing Ψmin(t) to
change during this time would allow the CR addition-
ally to contribute to speeding up of reptation, thus dou-
ble counting some of the stress decay (which should not
be allowed). Accounting for this is significant predomi-
nantly for chains with a small number of entanglements
(i.e. preventing them from relaxing too fast within the
algorithm).
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In general, once an optimal reptation tube diameter aT
is found, Ψmin(t) will then typically remain at a constant
value until aeq(t) reaches another, more optimal tube di-
ameter. Considering a reptation dominated relaxation
of bimodal blends (i.e. when the relaxation from CLF
can be neglected), with a single constraint release time
τCR ≡ τd,s, if τd,s � τe/φ

2
S and Bζ = 1, the analysis here

agrees with the theory of Viovy and coworkers [14, 28]
deciding simply between reptation in thin or fat tubes,
provided we neglect the small difference between φST and
φeq. Here, τd,s is the reptation time of the short chains,
and φS is the weight fraction of the short chains.

F. Contour length fluctuation

To deal with contour length fluctuation (CLF) in a
constantly evolving tube diameter, we follow the analy-
sis by Read et al [14]. A crucial feature of this is the
distinction between (i) the optimal tube for chain trans-
port along the tube (CLF requires chain sections to fluc-
tuate back and forth along the tube over multiple tube
diameters) and (ii) the tube in which chains can locally
equilibrate, giving freedom to access deeper CLF through
equilibrium fluctuation. Hence in the analysis for binary
blends by Read et al [14], for some blends local equilibra-
tion is possible in the fat tube (so that CLF occurs to a
depth allowed by the fat tube) whilst the rate of CLF re-
mains controlled by chain transport along the thin tube.
We now generalise this to the case of nested tubes with
multiple constraint release times.

The amount of chain end relaxed by CLF at a certain
time t can be viewed as the number of monomers capable
of moving coherently at that time. We assume that at t,
the optimal tube for translational motion of chain subsec-
tions along the tube is given by the optimal tube diam-

eter for reptation, aT ≡ a0φ
−α/2
T . The tube diameter in

which monomers can locally equilibrate via CR is the cur-

rent equilibrium tube diameter aeq(t) ≡ a0φ
−α/2
eq (t). The

translational friction coefficient for motion along the con-
tour of tube diameter aT can be mapped onto an effective
friction constant for motion along the smoother contour
of the current equilibrium tube diameter aeq ≥ aT as:

ζCLF = ζT
φαT
φαeq

. (22)

Hence, making use of Eqn. 20 evaluated at its minimum:

ζCLF
ζ0

=
ζT
ζ0

φαT
φαeq

=
Ψmin(t)

φαeq(t)
. (23)

The number of monomers that can participate in coher-
ent fluctuation is estimated by inverting the Rouse time
of these monomers as

n(t) =

√
3π2kBT

ζCLF b2

√
t = Ne

√
ζ0

ζCLF

√
t

τe
. (24)

Following Read et al [14], the rate of increase in the

mean-squared displacement
〈
l2aeq

〉
of the end monomer

via this correlated diffusion measured along the current
tube diameter aeq is, at the current time t

d

dt

〈
l2aeq

〉
= C1

kBT

n(t)ζCLF

= C1
a2

0

3π2

√
ζ0

ζCLF

1√
tτe

= C1
a2

0

3π2

1√
tτe

√
φαeq(t)

Ψmin(t)
. (25)

Here, C1 is a numerical constant. Mapping displacement
laeq along the tube at aeq onto displacement z along

a0 (measured in number of entanglements)
〈
l2aeq

〉
=

φαeq(t)a
2
0

〈
z2
〉
. So,

d

dt

〈
z2
〉

=
Ca√
tτe

1√
φαeq(t)Ψmin(t)

. (26)

Here, we have absorbed a factor of 1/3π2 in the new
numerical prefactor Ca. Since φeq is a monotonically de-
creasing function of time, CLF is most efficient in the
current (widest available) tube. CLF is also accelerated
when CR enhances the translational motion along fatter
tubes, as captured by Ψmin(t). We retrieve the familiar
Doi and Edwards [3] expression for CLF if we integrate
the equation assuming φST = 1 at all times (only thin
tube is relevant for relaxation) and Ca = 2

3π3/2 . Antici-
pating the advantage of logarithmic time steps,

dz

d ln
(
t
τe

) =
Ca
2z

1√
φαeq(t)Ψmin(t)

√
t

τe
. (27)

G. Transition from CLF to reptation relaxation

In previous works, especially the Hierarchical model
and BoB models for predicting branched polymer vis-
coelasticity [24, 25], the transition from CLF to reptation
is handled by allowing CLF to continue, increasing z(t)
for each polymer, up until the reptation time accelerated
by CLF as in Eqs. 19 and 21. Although appealing, this
recipe unfortunately leads, in practice, to far deeper CLF
and consequently faster reptation than is correct (for ex-
ample in comparison of the BoB and Hierarchical models
to predictions for monodisperse polymers from Doi and
Edwards [3] or analysis by Likhtman and McLeish [9]).

A more correct scaling argument (see, e.g., [5]) is to
compare the time to relax to depth z by CLF with the
time to reptate the centre of mass by distance z (mea-
sured in thin tube entanglement units). When the chain
segment currently relaxing via contour length fluctuation
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could have relaxed via reptation faster, the dominant re-
laxation mechanism changes from contour length fluctua-
tion to reptation. If the segment z is reached via contour
length fluctuation at time tc, we switch to reptation if

KR3Z (2z)
2

Ψmin(tc) ≤ tc. (28)

Here KR is an order one constant. For a given chain,
once the inequality of Eq.28 is satisfied, the chain is as-
signed a reptation time according to Eq. 21 evaluated at
t = tc (including the possible acceleration due to avail-
ability of wider tubes accessible at this time). From this
time onward, CLF relaxation is terminated for this chain
and relaxation happens by the reptation spectrum (in-
cluding higher mode contributions). Further relaxation
of other chains does not change the assigned reptation
time (though we leave the possiblity open for terminal
relaxation via total loss of entanglement described be-
low).

For pure reptation (without contour length fluctuation
in fixed tube diameter) the fraction of tube segment oc-
cupied as time t is given by

µrept(t) =
8

π2

∑
p,odd

1

p2
e
−p2 t

τd,a0 . (29)

If, for a particular chain, the reptation time is assigned
at tc with the unrelaxed length of the chain as ZR ≡
Z − 2z(tc), the maximum number of modes is selected

from pmax = int
(
τd
tc

)
. The prefactor 8

π2 is changed to

the inverse of the finite sum

SR ≡
pmax∑
p,odd=1

1

p2
. (30)

Each exponential term in the sum is obtained via a step
relaxation in φ(t) occurring at τd,p ≡ τd

p2 . In practice,

at time τd,p we increase z(t) by 1
2ZR/(p

2 SR) giving the
desired effect in Eq. 3.

H. Loss of entanglement

When the current tube diameter becomes comparable
to the size of a polymer (ZφST ' 1), the polymer is
no longer constrained by the tube constraints and the
remaining modulus from this chain is considered to relax
with the current timescale.

I. Subtube diameter relaxation

A part of modulus can relax by comparatively rapid re-
arrangement of the Rouse beads from tension equilibrium
along the tube axis. We use the form of Likhtman and
McLeish to describe this longitudinal Rouse contribution

to the relaxation moduli as

GL(t) = G0
N

∑
i,Zi>Zu

wi
4Zi

Zi−1∑
p=1

e
− p2

Z2
i

t
τe . (31)

Here, wi is the weight fraction of polymer i with Zi entan-
glements and the sum over i only includes the entangled
chains (See section II J below). Relaxation faster than τe
within the Rouse bead picture is handled by considering
the internal Rouse contribution as

GIR(t) = G0
N

∑
i,Zi>Zu

5wi
4Zi

NeZi∑
p=Zi

e
− 2p2

Z2
i

t
τe . (32)

We incorporate fast glassy relaxation contribution as a
single stretched exponential decay [36, 37]

Gg(t) =

(
G∞ −

5

4
G0

N

)
e

(
t
τg

)βg
. (33)

Here, G∞ is the glassy modulus, τg is the ‘α-relaxation’
time, and the exponent βg < 1 controls the stretched
exponential decay observed experimentally. We assume
that all these relaxation processes do not affect the long
time relaxation described by the tube model and the con-
tribution from these fast processes are added separately
to the stress relaxation from the tube model in Eqn. 2.

J. Relaxation of short unentangled chains

While our description is developed for well-entangled
chains, experimental blends and polydisperse melts often
contain significant fraction of short unentangled chains.
We hypothesize that the stress decay from chains with
Z < Zu are described by simple Rouse-form and additive
to the polymeric stress

GR(t) =
5G0

N

4Z
∑

i,Zi≤Zu

NeZ∑
p=1

e−
2p2

Z2
t
τe . (34)

The effect of these short chains on the long molecules
are modeled by considering the entire weight fraction car-
ried by chains with Z < Zu relaxing with timescale τe in
the calculation of the decay of φST . Here, Zu is an order
one parameter.

III. RESULTS AND DISCUSSION

A. Uncertainty of experimental results and fitting the
model parameters

The model developed here involves a number of pa-
rameters that in principle can be determined by fitting
experimental observations. While a large number of stud-
ies on model (narrow molar mass distribution) polymers
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FIG. 3. Scaled zero-shear viscosity for various 1,4 polyiso-
prenes.

and their blends are available in the literature, an objec-
tive optimization of the parameters by fitting the exper-
imental observations is problematic due to experimental
uncertainties about the polymer characterizations, and
the presentation of the relaxation data. This is exem-
plified by examining the molar mass dependence of the
zero shear viscosity for a series of nominally 1,4 polyiso-
prene (PI) shown in Fig. 3. These polymers were an-
ionically synthesized and were characterized as having a
low polydispersity. Auhl et al. [38] and Abdel-Goad et
al. [39] reported their zero shear viscosity data at 25◦C.
The data from Watanabe and coworkers [18, 40–42] were
obtained by fitting the low frequency dynamic viscosity
to the cross model and shifting the values to 25◦C with
the reported TTS parameters. The viscosity in this plot
is scaled by M3.4

W to cancel out the dominant molar mass
dependence so that the differences between the samples
are prominent. A conventional view of the plot along
with predictions is shown in Fig. 6. Concentrating at
MW ' 105g/mol, Fig. 3 shows that the viscosities of the
different samples differ by up to a factor of 4.

The large scatter in the zero-shear viscosity in Fig-
ure 3 can be due to multiple uncertainties about the sam-
ples and the measurements. Firstly, routine molar mass
determination from gel-permeation chromatography can
have large uncertainty and can vary systematically be-
tween the different groups because of different protocols
[43]. For polydisperse samples, the detailed shape of the
molar mass distribution may be important but are sel-
dom reported in the literature. Secondly, the ‘headline’
chemistry hides the fact that different samples can have
different microstructures (and possibly different amounts
of solvents) resulting in different responses [44–46]. Fi-
nally, the experimental results are normally presented as
composite master-curves by combining results from ex-
periments at different temperatures [47]. Different pro-
tocols used by different groups can result in significantly

different master-curves from the same raw data.
In view of the uncertainties associated with the avail-

able experimental data, we have first reduced the num-
ber of model parameters by assigning reasonable a pri-
ori values to a subset of parameters, used results from
available computer simulations to determine a few of the
parameters, and used selected experimental data to de-
termine the remaining parameters. Of course the param-
eters so determined cannot describe all the experimen-
tal data that we consider in this paper in view of the
differences between the experiments exemplified in the
scatter of the zero-shear viscosity. In describing some
of the experimental data we needed to reassign different
molar masses (and polydispersity) than the reported val-
ues. Also in some cases the data is best described by
assigning somewhat different values of the entanglement
times for different samples of the same headline chem-
istry. These changes in the molar mass and variations
in τe are clearly stated where they have been used. An
alternative possibility would have been to assign possi-
ble ranges for the parameters. However, in capturing the
results for the large number of experimental data on bi-
nary blends considered in this work, the uncertainties in
the parameters would be larger than the subtle changes
in the viscoelastic and dielectric responses that we are
interested in describing.

We assume that certain parameters are chemistry in-
dependent and first detail our considerations in assigning
their values in the next subsection. The chemistry depen-
dent material parameters are introduced separately along
with results for monodisperse polymers in the subsequent
subsection.

B. Chemistry independent parameters

We use the tube dilation exponent α = 1, consider
molecules to be unentangled if ZU ≤ 1.5, and consider
molecules to relax completely by constraint release when
ZφST = 1. We set the constant Bζ connecting CR time
to friction as 2.0, and use the same value for the con-
stant Aeq that determines delay in accessing wider tubes
for translational diffusion. The choice of ZU , along with
modification of short time CLF (Eq. 37 below) deter-
mines the crossover of the slope of molar mass depen-
dence of the zero shear viscosity from unentangled to en-
tangled behaviour. A different choice of ZU would require
a different modification to the short time CLF than re-
ported here. The results remain qualitatively unchanged
with ∼ 10% variations in Bζ , or Aeq, and we fix these
parameters as 2 based on the Rouse result of a factor 2
difference between the stress and orientation relaxation
times.

We force predictions from our model for µ(t) to
match the stochastic simulation results of Likhtman and
McLeish [9] (LM model) in the long chain limit. This
fixes the prefactor Ca for CLF, and the parameter KR
associated with transition from CLF to reptation. Likht-
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man and McLeish [9] found that their simulation results

for µ(t) can be described as µ(t) = 1 − cµ
Z (t/τe)

1/4
for

t < τR with cµ = 1.5 and the reptation time can be ex-
pressed as τd = 3Z3f(Z)τe. The function f was fitted
by them as

f(Z) = 1− 2C1/
√
Z + C2/Z + C3/Z3/2, (35)

with C1 = 1.69, C2 = 4.17, and C3 = −1.55. Results for
µ(t) from our model for long chains in a fixed tube for
t < τR matches that of Likhtman and McLeish [9] with
Ca = 0.189. With a constant parameter KR determining
the switch between the CLF to reptation dominated re-
laxation (Eq. 28), the reptation time in the absence of
CR is

τd = 3Z3

[
1− 4Ca

√
3KR√
Z

]2

τe. (36)

The leading order dependence of τd on Z can be matched
with the Likhtman and McLeish (LM) model using KR =
1.664. However, the differences in the higher order terms
result in significant underestimates in the value of τd for
moderately entangled chains as compared to the predic-
tions of the LM model (and experiments). In order to de-
scribe the relaxation of moderately entangled polymers
in the same framework, we modify the short-time CLF
by introducing a time-dependence in Ca as an approxi-
mation of step function about τe in the logarithm of time
as

Ca(t) = Ca,0 +
Ca,∞ − Ca,0
1 + (τe/t)

εa . (37)

The long-time coefficient for CLF Ca,∞ is chosen to be
0.189 such that for sufficiently long chains the predictions
from our algorithm for µ(t) in the absence of CR is in-
distinguishable from the LM model predictions. We use
experimental results from Auhl et al. [38] on a series of
PI to fit the short-time coefficient Ca,0 = 0.02 and the
exponent εa = 0.42 controlling the sharpness of transi-
tion to the long-time behaviour. Note that these values
overcompensate the deviation from the LM predictions
for the µ(t) for moderately entangled chains and follows
the experimental results closely down to unentangled PI
polymers. With our chosen parameters, the higher order
coefficients in the expansion of f(Z) in Eq.35 are different
from those of Likhtman and McLeish and are C2 = 4.5,
and C3 = −1.98.

We use the rheology results of [13] on PI binary blends
and dielectric and mechanical relaxation of [40, 41] data
on PI binary blends to assign δ∞CR = 0.3 as the fractional
drop in φST for long CR times. It is notable that recast-
ing this value in terms of Aζ , the proportionality constant
between CR friction and timescale of CR (Eq. 7), this
value for δ∞CR gives Aζ = 1.25, which is substantially
larger than the value 0.047 obtained by Read et al. [14]
from slip-spring simulations and apparently confirmed by
experimental observations of Malo de Molina et al. [48].

The simplified model of Read et al. [14], when applied
to experimental data, assumes that the CR time of the
short chains is identical to their terminal reptation time.
In contrast, the detailed modelling proposed here con-
siders the full spectrum of CR times including CR from
CLF (which is a significant fraction of CR for moderately
entangled chains and significantly faster than reptation).
Both the simplified model of Read et al. [14] and our de-
tailed model in this work are applied to describe the same
experimental results (i.e. they must assign the same total
friction from CR). Hence, to match the same experimen-
tal data, a small value of Aζ is needed for the simplified
model but a larger one is needed in the present work. In
this context it is notable, for example, that the present
model still predicts a small value for the critical Graess-
ley parameter for crossover between relaxation by CR or
reptation for dilute long chains in a binary blend (see
figure 9 below).

We summarize the chemistry independent parameters
in Table I along with reference to the equations where
they appear in the text. We note that, ZU and the short
time correction to CLF determines the “crossover molar
mass”, MX , between the entangled and entangled be-
haviour. The ratio of MX and Me is found in experi-
ments to mildly depend on the chemistry. Hence, ZU
and the short time correction to CLF should also have
some dependence on the chemistry. In our modelling we
have fitted these parameters based on PI and used the
same values for PB and PS.

TABLE I. Model parameters independent of polymer chem-
istry

Parameter Value
α 1 Eq. 1
δ∞CR 0.3 Eq. 9, 10
Bζ 2 Eq. 14
Aeq 2 Eq. 17
Beq 10 Eq. 17
Ca,∞ 0.189 Eq. 27, 37
Ca,0 0.02 Eq. 37
εa 0.02 Eq. 37
KR 1.664 Eq. 28
ZU 1.5 Sec. II J

C. Material-dependent parameters and results for
monodisperse polymers

We begin with a consideration of fitting to data from
near-monodisperse polymers, since these form a base case
allowing us to fix parameters for later description of poly-
disperse materials. Note that we fully account for poly-
dispersity even for these narrowly distributed materials.

We use a series of well-characterised narrowly dis-
tributed PI from Auhl et al. 38 to determine the Me,
τe, and G0

N for polyisoprene. These samples also serve
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FIG. 4. (a) Storage and loss moduli of PI samples shifted
to an isofrictional state at 25◦C from Ref. [38] along with
predictions from our model. (b) Zoomed view of the loss
moduli of the same samples presented in log-linear scale to
highlight the terminal relaxation.

to determine the early-time modification of the prefac-
tor to CLF. Figure 4(a) shows the viscoelastic moduli
(symbols) from Ref. [38] and our predictions (lines) with
Me = 4.35 kg/mol, τe = 1.3× 10−5s, and G0

N = 476kPa.
Note that for the 23k, 34k, 226k and 483k samples we
follow the molecular weight labels from Ref. [13]. The
molecular characteristics of these samples from Ref. [38]
are 12k (MW = 13.5 kg/mol, PDI=1.04), 23k (23.4,
1.03), 34k (33.6, 1.03), 90k (94.9, 1.03), 226k (225.9,
1.03), 483k (483.1, 1.03), 600k (634.5, 1.03), and 1000k
(1131.0, 1.05). The zoomed view of the loss moduli in
Fig.4 (b) shows that for long chains we overpredict the
height of the reptation peak by about 10%.

The choice of τe depends on the high frequency glassy
relaxation to some extent [36, 37]. However, for many
polymers, the high frequency relaxation of local confor-
mation (segmental modes) and the low frequency relax-
ation of chain conformation (chain modes) follow differ-
ent temperature dependencies for the horizontal shift fac-
tor [49]. While a reasonably smooth master curve can be
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FIG. 5. Mechanical and dielectric relaxation moduli of PI
samples from Ref. [42] along with predictions from our model.

obtained by combining different temperature measure-
ments [50], the resulting master-curve will depend on the
details of the fitting procedure. For, our description of
PI, we fix G∞ = 109 Pa, and τg = 7 × 10−11 s from
the stress and dielectric relaxation experiments respec-
tively from the work of Mohamed et al. [51], We fix
the stretching exponent βg = 0.37 to best describe the
slope of the high-frequency elastic moduli in Fig.4. With
the uncertainty about the validity of TTS and lack of
extensive good quality glassy responses in the literature,
we assume that the high frequency contribution simply
shifts in proportion to τe if the reference temperature of
25◦ C is changed.

TABLE II. Molar masses of PI from Watanabe et al.

Label MW PDI τe at 40◦C
(kg/mol) (10−6 s)

L14k 14.4 1.03 5.2
L18k 17.6 1.04 6.5
L21k 21.4 1.04 6.5
L34k 34.4 1.04 6.8
L43k 43.2 1.03 9.9
L60k 59.9 1.05 6.8
L94k 94.0 1.04 5.9
L99k 98.5 1.04 8.7
L179k 179.0 1.02 6.8
L308k 308.0 1.08 7.6
L626k 626.0 1.06 7.0
L1M 1120.0 1.03 5.9

Similarly, Fig. 5 shows both the mechanical viscoelas-
tic and dielectric loss modulus for a series of PI samples
from Matsumiya et al [42]. In our predictions we used
slightly different values of τe for each of the different sam-
ples to describe the data (see table II). A modification
such as this is required to account for the differences in
zero shear viscosity between different samples evident in
Fig. 6, both in terms of apparent discrepancy of the over-
all trend between the Matsumiya and Auhl data, but also
to account for variation from one sample to the next. A
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FIG. 6. Zero-shear viscosity as a function of the molar mass
for 1,4 polyisoprenes.

different value of τe might represent slightly different mi-
crostructure. An alternative, here, would be to attribute
the scatter in data to differences in calibration and varia-
tion in GPC measurements between groups, or to differ-
ent TTS procedures. Nevertheless, we have found that
the simple expedient of allowing a small change in τe and
of making correlated changes for blends of these mate-
rials (see below) allows a consistent description of both
the monodisperse samples and their blends.

Of particular note in Fig. 5 is that we capture the off-
set (by roughly factor 2) between the peaks in dielectric
and rheological loss modulus. This prediction is a direct
result of using Eq. 4 for dielectric relaxation, and Eq. 2
for stress relaxation, together with the step drop in φST
parameterised by δCR as outlined in Section II C. As a
result, constraint release is predicted to increase the rate
of stress relaxation. Use of Eq. 6 for stress relaxation
would not produce this effect.

We show the molar mass dependence of viscosity pre-
dicted from our model in Figure 6 by considering a series
of polymers with a narrow fixed polydispersity of 1.01.
The parameters chosen for these predictions are the same
as used in describing the PI samples in Figure 4. We su-
perpose literature data of various PI samples in the plot.
Because of the logarithmic scale and since we have not
removed the dominant M3.4

W scaling from the viscosity,
the differences in the experimental data are not so evi-
dent as in Fig. 3, but are still visible on close inspection.
The theoretical curve closely matches the Auhl data, as
expected.

Turning to other polymer chemistries, Figure 7 shows
the dynamic modulus for PS6 (2.54M; 1.13), PS5 (757k;
1.09), and PS4 (292k; 1.09) at 180◦C from Schaus-
berger, Schindlauer, and Janeschitz-Kriegl [52]. The
molar masses of these samples were updated in a later
publication [54]. The data for M96 (96.4k; 1.05) from
Matsumiya, Uno, and Watanabe [53] have been shifted
from the reported 110◦C by scaling the frequency and
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modulus with factors 2.5 × 106 and 0.87 respectively.
The parameters used for the predictions in Fig. 7 are
Me = 12.87 kg/mol, τe = 2.2 × 10−4 s, G0

N = 220 kPa,
τg = 1.3× 10−9 s, G∞ = 1.2 GPa, and βg = 0.39.

Figure 8 shows the dynamic modulus from two PB
samples from Li, Park, and Dealy [55]. The synthesis of
these samples resulted in significant end-linking. GPC
results of PBD2 is described as a blend of 10% 147k
(PDI=1.13) and 90% 94k (1.02). The PBD3 sample is de-
scribed as a blend of 10% 292.5k (1.03), 40% 268k (1.03),
and 50% 253k (1.03). The figure also shows the results of
410k (411.5k; 1.01) from Wang et al [16] that extends sig-
nificantly in the glassy regime. This dataset was shifted
by scaling the frequency and modulus with factors 0.859
and 1.01 respectively. The predictions in Fig. 8 used
Me = 1.63 kg/mol, τe = 2.5 × 10−7 s, G0

N = 1.2 MPa,
τg = 4.5× 10−12 s, G∞ = 1.2 GPa, and βg = 0.32.
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We summarize the material parameters for all three
chemistries in Table III. We quote values of τg and G∞
as ratios of τe and G0

N respectively in this table. In de-
scribing data from different reference temperatures, we
have used Rouse scaling of the modulus shift (vertical
shift in G0

N proportional to the product of density and
absolute temperature) and change in τe (horizontal shift
factor aT ). Our assumption that time-temperature su-
perposition approximately holds requires τg and G∞ to

vary in the same way with temperature as τe and G0
N

respectively and their ratios need to be approximately
temperature independent. In Table III the τe values for
PI, PB, and PS refer to those used in describing data
presented in Fig. 4, 8, and 7 respectively. As discussed
above, somewhat different values of τe is required to de-
scribe some of the other polymers considered in this pa-
per. We include a range for the values of τe for each of
these chemistries in Table III that we needed to describe
all the different experimental data.

TABLE III. Material parameters for 1,4 PI, 1,4 PB, and at-
actic PS at the shown reference temperature

1,4 PI 1,4 PB a-PS
Tref (◦C) 25 25 180
MK (g/mol) 113 105 720
Me (g/mol) 4350 1630 12870
τe (s) 1.3× 10−5 2.5× 10−7 2.2× 10−4

[1.3− 3] [2.5− 5.1] [1.2− 3.8]
G0

N (kPa) 476 1200 220
G∞
G0

N
2100 1000 5455

τe
τg

1.86× 105 5.56× 104 1.69× 105

βg 0.37 0.32 0.39

D. Binary blends of narrow molar mass distribution
polymers

We turn now to binary blends composed from monodis-
perse polymers of two chain lengths. For each polymer
chemistry, the structure of these melts can be charac-
terised by three parameters: the molecular weight of
the long and short polymers (which can be expressed
in terms of the number of entanglements, ZL and ZS
along long and short chains), and the volume fraction φL
of long chains in the melt. This nevertheless produces
a rich variety of modes for polymer motion, dependent
on the degree to which long chains are restricted by en-
tanglements with other long chains, and the relative rate
of constraint release from short chains, as compared to
other modes of long chain motion. For a pure repta-
tion description of polymer motion (i.e. ignoring CLF)
Viovy et al [28] proposed a two dimensional projection of

the three-parameter space: parameter Z̃L = ZLφL char-
acterises the degree to which long chains are entangled
with themselves (assuming dilution exponent of one); the
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FIG. 9. Location of the various bimodal blends modelled in
this study on the Viovy diagram. The green triangles indicate
cases where the terminal relaxation of the long component is
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where the long component relaxes by reptation in the thin or
the fat tube respectively. Because of small but finite poly-
dispersity of the samples, in some cases different molar mass
components of the long chains access different terminal relax-
ation pathways.

Graessley parameter Gr = ZL/Z
3
S characterises the rel-

ative importance of constraint release from short chains
on the dynamics of the long chains. Small values of Gr
correspond to slow constraint release (so that reptation
along the thin tube dominates) whilst larger values of
Gr correspond to faster constraint release, opening up
other avenues for long chain relaxation. This picture was
modified by Read et al [14] to include the additional ef-
fects of CLF, resulting in a suggested modification of the
Graessley parameter to:

Gr∗ =
ZL

3Z3
Sf(ZS)

(38)

where f(Z) introduced in Eq. 35 is the Likhtman-
McLeish [9] correction to reptation time due to CLF. We
use results for monodisperse polymers from our model to
estimate f(Z) for the short chains in assigning Gr∗ in this
paper. Both Viovy et al and Read et al use the two di-
mensional (Z̃L,Gr∗) space to map out regions where dif-
ferent dynamical behaviour from long chains is expected,
for example where reptation is expected to be dominated
by motion along thin or fat tubes. For summaries for
this, see for example [5, 13, 14, 28].

For our purposes, we employ the suggested two dimen-
sional (Z̃L,Gr∗) map of parameter space as a means to
ensure that we test our model against as wide a variety of
different types of binary blend as possible. It is not suffi-
cient to demonstrate predictions only in a small window
of this space, where typically only one or two relaxation
mechanisms are dominant. Accordingly, we show in Fig-
ure 9 the two-dimensional (Z̃L,Gr∗) space populated by
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FIG. 10. Viscoelastic responses for PI 226k/23k blends from
Ref. [13] at the shown weight fractions along with predictions.

the locations of the various sets of data we investigate.
It can be seen that these span a wide range of relative
CR rates, as well as long chains ranging from dilute to
well entangled with one another.

We first consider several studies which employed two
polymers of different molar masses and systematically
varied the relative weight fraction of the components to
vary Z̃L while keeping Gr∗ fixed (horizontal lines in the
Viovy diagram). Fig. 10 and Fig. 11 respectively show
the viscoelastic responses of blends of PI 226k and 23k
(Gr∗ = 0.54) and of PI 483k and 34k (Gr∗ = 0.32) consid-
ered by Read et al [13]. We use identical values of τe, Me,
and G0

N for the predictions as we used for the monodis-
perse polymers considered in Fig. 4. In both cases, at the
lowest concentrations of the long chains (φL = 0.04) the
long chains become unentangled in the supertube and the
final relaxation of the long component is via disentangle-
ment. At higher concentrations, the terminal relaxations
of the long chains are via chain motion along the thin
tube. With reduction in φL, the peak in G

′′
shifts to

higher frequencies - the reduction in the reptation times
in these cases are due to enhanced CLF in the fat tube
(i.e. in terms of the notation of Eq. 27, Ψmin(t) corre-
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FIG. 11. Viscoelastic responses for PI 483k/34k blends from
Ref. [13] at the shown weight fractions along with predictions.

sponds to chain motion along the thin tube, whilst φαeq(t)
allows freedom for CLF taking place in the fat tube, as
described in Refs. [13, 14]). Our predictions capture
shifts in both the frequency and modulus in the dynamic
viscoelastic moduli without any additional fitting param-
eters.

Fig. 12 shows the viscoelastic and dielectric responses
for blends of PI 308K and either 21K (plots a,c,e) or 94K
(plots b,d,f) from ref. [40, 41]. As with the predictions
for the individual components, we have used slightly dif-
ferent values of τe for the different blends (τe between
6.2 and 7.2 µs for blends with 21k, and between 5.9 and
6.5 µs for blends with 94K). The data for low concen-
trations of the long chains fit with the same values of
τe as required to fit the pure short chains. The termi-
nal relaxation of the long chains in the 308K/21K blend
(Gr∗ = 0.92) is via CR for φL ≤ 0.02, via reptation in the
fat tube for 0.03 ≤ φL ≤ 0.1 and via reptation in the thin
tube for φL ≥ 0.2. With small values of the Graessley
number (Gr∗ = 0.005, i.e. very slow CR), the long chains
in the 308K/94K blend switches over to reptation in the
thin tube from terminal relaxation by CR for φL ≥ 0.03.

Figure 13 shows the experimental data and predictions
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for a series of bimodal PB blends measured by Wang et
al [16]. The 410K long chains (MW = 411.5 Kg/mol,
PDI=1.01) were blended at 5, 10, 20, 40, 60 and 80%

concentrations in different short chains resulting in Z̃L
between 12.6 and 202. For these predictions, we use
τe = 2.15 × 10−7s at the reference temperature of the
experimental data of 40◦C. Using the TTS parameters
from [55] this corresponds to τe = 4.4 × 10−7s at 25◦C,

approximately 75% larger than those used for predictions
in Fig. 8.

Fig. 13a, and b respectively show the elastic and vis-
cous responses with the 100K short chains (MW =
99.1 Kg/mol, PDI=1.01). With very small Gr∗ = 6 ×
10−4, the terminal relaxation of the long chains are in
the thin tube at all concentrations. The 410K chains also
reptate in the thin tube at all concentrations in the blends
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FIG. 13. Master curves for PB blends at the shown weight fractions from Wang et al [16] along with predictions.

with the 44K sample (MW = 43.9, Kg/mol, PDI=1.01)
with Gr∗ = 0.01 shown in Fig. 13c, and d.

The blends with 3.9K (MW = 3.9 kg/mol, PDI=1.1)
has Gr∗ = 40.8 and shows a transition from thin tube
to fat tube reptation for the long chains as a function
of the 410K concentrations. The long chains at concen-
trations 20% (Z̃L = 50.5) or below reptate in the fat

tube. The long chains at 40% (Z̃L = 101) and higher
concentration blends undergo reptation in the thin tube.
The short species 3.9K in these blends have relatively

high polydispersity (1.1). Assumption of a log-normal
distribution suggests that 9.5 wt% of the chains are be-
low 1.5Me and have been assumed to relax by unentan-
gled Rouse dynamics in our calculations. For the 5%
blend, the entangled chains below 9.1 kg/mol reptate in
the thin tube. The resulting increase of the tube diame-
ter makes the remaining high molar mass tail of the 3.9K
species effectively unentangled. In the 10% blend, thin
tube reptation is accessed by the entangled chains below
8.4 kg/mol in the 3.9K species. The remaining 0.4 wt%
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FIG. 14. Viscoelastic responses for PB 550K/20K blends from
Park and Larson [17] at the shown weight fractions along with
predictions.

of short chains having higher molar mass reptate in a
fatter tube (of diameter much smaller than the fat tube
accessed for reptation of the 410K species). This change
from thin to fat tube reptation shifts to 7.7 kg/mol for
the 20% blend (0.9 wt% chains in the high molar mass
tail of 3.9K species reptates in the fat tube). All entan-
gled chains of the 3.9K species reptate in the thin tube
for the higher concentration blends.

Fig. 14 shows the experimental data on blends of PB
550K and 20K (Gr∗ = 0.17) from Park and Larson
[17] along with our predictions. We have assumed a
PDI=1.05 for the 550 kg/mol sample and a PDI=1.02
for the 20 kg/mol sample. The pure 550K sample exper-
imental data was presented from measurements at 70◦C
with the appropriate horizontal shift, but without any
vertical shift. To compensate, our predictions for the
pure 550K sample has been shifted vertically by a factor
1.116. These predictions uses the same material param-
eters as used for the predictions in Fig.8, specifically the
same τe = 2.5 × 10−7 s. At the lowest concentration
of the long chains (φL = 0.01), the long chains become
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FIG. 15. Viscoelastic responses for PS 50K, 100K, 390K and
three blends from Nielsen et al [56] along with predictions.

unentangled in the fat tube before reptation can be ac-
cessed. The terminal relaxations of both the short and
long species are reptation in the thin tube for all the
higher concentration blends.

Fig.15 shows the dynamic moduli for PS50K
(MW = 51.7 kg/mol, PDI=1.026), PS100K (MW =
102.8 kg/mol, PDI=1.022), and PS390K (MW =
390 kg/mol, PDI=1.06) from Nielsen et al [56]. Also
shown are dynamic moduli for three blends from the
same reference: BL1 (4.02% PS390K in PS50K matrix,

Z̃L = 1.22, Gr∗=0.82), BL2 (14.37% PS390K in PS50K

matrix, Z̃L = 4.35, Gr∗=0.82), and BL3 (14.02% PS390K

in PS100K matrix, Z̃L = 4.25, Gr∗=0.07). The predic-
tions (lines) are with G0

N = 0.22 MPa, and τe = 0.39 s
for PS390K and τe = 0.44 s for PS50K, PS100K and
the blends. The terminal relaxation of the high molar
mass component in blend BL1 is via CR (disentangle-
ment). The terminal relaxation of the high molar mass
component in BL2 is partly via reptation in fat tube (the
shorter chains) and partly via disentanglement. The high
molar mass component in blend BL3 relaxes by repta-
tion in the thin tube, except for the small fraction with
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M > 780 kg/mol, which relaxes via disentanglement.

We next consider PB bimodal blends from Struglinski
and Graessley [57] (Figs. 16 and 17) and Rubinstein and
Colby [58] (Fig. 18) which have been influential in de-
veloping theories for relaxation in bimodal blends, but
which occupy a relatively small area in the Viovy dia-
gram. These blends have comparatively large Z̃L (long
chains remain well entangled after the terminal relax-
ation of the short component) and small Gr∗ ensuring
the terminal relaxation of the long component via rep-
tation in the thin tube. Fig. 16 shows the elastic and
loss moduli for 41k/174k blends (Gr∗ = 0.0085) in log-
log plot; the loss modulus is shown in a log-linear plot
in Fig. 17. Fig. 17(b) and (c) show the loss modulus in
log-linear plot for the 41L/435L blends (Gr∗ = 0.02) and
the 174L/435L blends (Gr∗ = 10−4). Overall our pre-
dictions capture the shifts in the modulus as a function
of weight fraction of the long chains in all cases. How-
ever, the experimental loss peak for 435L shows a wide
high frequency flank absent in our predictions. Fig. 18
shows the loss modulus for blends of PB 355k and 71k
(Gr∗ = 1.5×10−3) from Ref. [58] in log-linear plot. This
data set captures both the reptation peaks from the short
and the long components. While our predictions capture
the shift in the reptation time of the short chains with
concentration correctly, the height of the reptation peak
for the short component in our model decreases faster
than in the experiments as a function of the concentra-
tion of the short chains. Such differences are hardly vis-
ible on a log-log plot.

Keeping the weight-fraction of the long chains fixed
while varying the molar mass of the short components
explores different values of Gr∗ at a fixed Z̃L (i.e. vertical
lines in the Viovy diagram of Fig. 9). In Figures 19, 20,
21, and 22 we consider three such sets of blends with
Z̃L = 0.72, 3.4, 232, and 469.3 respectively.

Fig. 19 shows the experimental data and predictions
for blends of 0.5% PI 626K in various short matrix con-
sidered by Sawada, Qiao, and Watanabe [18]. The long

chains in these blends are not self-entangled (Z̃L ' 0.72).
In making the predictions for the blends, we have used
the values of τe fitted for the short majority components
(Table II). The predictions for the viscoelastic responses
for the pure short chains are shown with dashed lines,
while those for the blends are shown as solid lines in
Fig. 19. For the blends with L14k (Gr∗ = 7.7), L18k
(Gr∗ = 3.9), L21k (Gr∗ = 1.9), L34k (Gr∗ = 0.35), and
L43k (Gr∗ = 0.15) the long chains become unentangled
in the supertube before they can relax by reptation, i.e.
terminal relaxation is via a constraint release Rouse pro-
cess. For the blends with 60K (Gr∗ = 4.9 × 10−2) and
179k (Gr∗ = 1.2× 10−3), the terminal relaxation for the
long chains are via reptation in the thin tube. Hence our
predictions are consistent with a small value for the crit-
ical Graessley parameter for transition between terminal
relaxation via constraint release or via reptation.

Fig. 20 shows experimental viscoelastic moduli (filled
symbols) of 2% long PS F270 in various short PS matrix
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FIG. 16. Dynamic modulus G
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and G
′′

for PB 41k/174k
blends from Struglinski and Graessley [57] at the shown
weight fractions along with predictions.

TABLE IV. Molar mass, polydispersity index and entangle-
ment time used in modelling for PS from Montfort, Martin,
and Monge 59

Label MW PDI τe at 160◦C
(kg/mol) (10−3 s)

F04 35 1.06 3.5
F11 110 1.05 3.5
F20 200 1.06 2.0
F39 390 1.1 1.9
F270 2200 2.0 1.9

(2700) (1.2)

from Montfort, Martin, and Monge [59] along with the
predictions (solid lines). Also shown are the experimental
data and predictions respectively with open symbols and
dashed lines for the single component polymers. The mo-
lar masses, polydispersity indices, and the entanglement
times used for describing the single component polymers
are shown in table IV. The high molar mass samples
F39 and F270 suggests τe = 1.9× 10−3 s at the reference
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FIG. 17. Loss modulus G
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for PB 41k/174k, 41k/435k, and
174k/435k blends from Struglinski and Graessley [57] at the
shown weight fractions along with predictions.

temperature 160◦C (τe = 2.1 × 10−4 s at 180◦C using
the reported TTS shift factor). Using F39 as the refer-
ence sample and assuming that η0 ∼ M3.4

W holds for the
high molar mass samples, we assign a molar mass of 2200
kg/mol for F270 instead of the reported 2700 kg/mol
[59]. We also required a higher polydispersity (PDI=2.0
instead of the reported 1.2) for this sample. The lower
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Rubinstein and Colby [58] at the shown weight fractions along
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from Montfort, Martin, and Monge [59]. The sample F270 is
best described by MW = 2200 kg/mol and PDI=2.0.

molar mass samples are described with higher values of
τe, possibly due to different glass transition temperatures
from the chain-end effect.

We use the τe of the majority short component to de-
scribe the blends with 2% F270 (Z̃L = 3.4) in Fig. 20.
The long chains in the blend with F04 (Gr∗ = 17.8) be-
comes unentangled in the supertube before they can ac-
cess reptation. The delayed CR in the blend with F11
results in terminal relaxation by reptation in thin tube
for the chains with M < 6 × 102 kg/mol (occupying 13
wt% of F270). The longer chains in F270 become unen-
tangled before they can relax via reptation. With further
delay in CR in the blend with F20, this crossover molar
mass is pushed to 6000 kg/mol and 95 wt% of F270 re-
lax by reptation in thin tube. The CR from the short
component relaxation is slow enough in the blend with
F39 matrix such that the terminal relaxation is entirely
by reptation in thin tube for the long F270 component.

In Figure 21 we show experimental data for mechan-
ical and dielectric relaxation from Matsumiya et al [42]

along with predictions from our model for PI 21k, 43k,
99k, 179k, 1.1M and blends with a minority of short
chains in the 1.1M matrix at the shown weight fractions.
The molecular characteristics and the values of τe used
to make the predictions for the pure samples are shown
in Table II. For the blends, the τe for the majority com-
ponent 1.1M gives good agreement with the data. The
long chains in the blends reptate in the thin tube. The
first three blends (10% short chains) have Z̃L = 232 and
the Graessley number varies between Gr∗ = 3.4 (blend
with 21k) to Gr∗ = 0.016 (blend with 99k). The blend

with 179k has Z̃L = 206 and Gr∗ = 0.002. The large
ZL and comparatively small Gr∗ ensures thin tube rep-
tation for the long chains. However, the real interest here
lies in the relaxation of short chains in the majority long
chain matrix. The predictions capture the peak heights
and positions of G

′′
and of ε

′′
from the relaxation of the

short chains and for the long chains in the blends cor-
rectly. We note that for the short chains in the blends,
the dielectric and rheological relaxation times are simi-
lar, both being similar to the dielectric relaxation time of
the pure short chains. This is because CR effects (which
accelerate rheological relaxation) are suppressed in the
blends. In contrast, the rheological relaxation time of
pure short chains is faster, since this is accelerated by
CR.

Fig. 22 (a) shows the experimental viscoelastic re-
sponses and the predictions for a series of PB consid-
ered by Liu et al [60]. The responses for the samples
22K (MW = 22.8 kg/mol, PDI=1.05), 39K (MW =
38.6 kg/mol, PDI=1.03), 99K (MW = 98.8 kg/mol,
PDI=1.03), and 160K (MW = 163 kg/mol, PDI=1.01)
are well-described with τe = 2.5× 10−7 s. A significantly
higher molar mass (19 kg/mol) compared to the reported
MW = 13.2 kg/mol is required to describe the lowest mo-
lar mass sample 14K (PDI=1.05). Similarly a lower mo-
lar mass of 850 kg/mol compared to the reported 1240
kg/mol is required to describe the highest molar mass
sample 1.2M (PDI=1.13). The predictions with the re-
ported molar masses for these two samples are shown
with dashed lines in Fig. 22 (a).

Fig. 22 (b) shows the viscoelastic responses of 10 wt%
of the short polymers in the long 1.2M matrix [60], which
are again aimed at discerning the relaxation of short
chains in a majority long chain matrix (so called “probe
rheology”). As with the predictions for the single compo-
nents samples, we use MW = 850 kg/mol for the matrix

polymer (Z̃L = 469). The Graessley number Gr∗ for the
blends vary between 2.5 × 10−4 (for blend with 160K)

to 0.32 (for blend with 14K). The large Z̃L and not too
large Gr∗ ensures that the terminal relaxation of the long
component in all the blends are via reptation in the thin
tube. The predictions correctly capture the frequencies
of the local maximum in the G

′′
from the terminal relax-

ation of the short components. Again, the relaxation of
the short components in the blends is slower as compared
to the pure short chains (the latter being accelerated by
CR).
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1.1M matrix from Matsumiya et al [42] along with predictions. The dielectric loss ε
′′

is shown with a factor 106.

E. Polydisperse polymers

In our approach polydispersity is included from the
beginning and all the results shown so far already in-
clude mild polydispersity even for “monodisperse” com-
ponents.

For large polydispersity, specifying only the first two
moments of the molar mass distribution (i.e. MN , and
MW ) may not be sufficient to characterize the distribu-
tion. For this reason, first we consider two artificially con-
structed polydisperse PS created by blending narrowly
distributed samples by Wasserman and Graessley [61].
The weight fractions of the components were chosen to
mimic smoothly varying broad distributions. The sample
M1 was constructed by mixing 0.1% 2.98k, 0.2% 5.57k,
0.4% 9.1k, 0.8% 19.6k, 3% 37.9k, 15% 96.4k, 26% 190k,
35.8% 355k, 14% 706k, 3.9% 1.09M, and 8% 2.89M. The
sample M2 was constructed by adding ∼ 1.2% higher mo-
lar mass component (3.84M and 4.48M occupying 0.7%
and 0.3% of the total material in M2) in a solution of M1.
Thus the two polymers have nearly identical MN , but the
higher moments of M2 are significantly larger than those
of M1. In our numerical calculations, we assume that the
reported molar masses of the components refer to their

weight averaged molar masses and use a PDI=1.01 for
each component. Fig. 23(a) shows the viscoelastic re-
sponses of these two samples at a reference temperature
of 150◦C along with predictions from our model using
τe = 8.58×10−3 s. The predictions correctly capture the
a slight increase in the viscous response and the more sig-
nificant increase in the elastic response for M2 at low fre-
quencies, as compared to the responses of M1. For both
the samples, the first three components are unentangled.
The remaining components show enhanced CLF due to
relaxation of shorter components, but the final reptation
for all these components are in the thin tube.

Figure 23(b) shows the viscoelastic responses and pre-
dictions for a commercial PS (MW = 321 kg/mol,
PDI=1.87) from the same reference [61]. For these pre-
dictions we assume that a log-normal distribution pro-
vides sufficiently accurate description of the molar mass
distribution. The figure also shows predictions for a hy-
pothetical polymer with the same weight averaged mo-
lar mass, but with narrow polydispersity (PDI=1.03).
In both cases the reptation relaxation of the entangled
chains are in the thin tube. The higher polydispersity
in this case smoothens the reptation peak in G

′′
, and

reduces the modulus at the reptation peak compared to
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FIG. 22. (a) Viscoelastic responses and predictions for a series
of PB from Liu et al [60]. The predictions require significantly
lower molar mass for the 1.2M sample and higher molar mass
for the 14k sample. Predictions with reported molar masses
are shown with dashed lines. (b) Viscoelastic responses of
10% PB 1.2M in various short PB matrices from Liu et al. 60

along with predictions.

narrowly distributed sample.

Figure 24 shows the experimental viscoelastic re-
sponses of a high polydispersity sample PS8 from Mont-
fort et al [62] and a low polydispersity sample F39
(MW = 390k, PDI=1.1) from Montfort, Martin, and
Monge [59] together with theoretical predictions. The
peak area in the GPC data of PS8 is well described by a
log-normal distribution with MW = 390k and PDI=2.9.
However, the log-normal distribution was found to over-
estimate the high molar mass tail. Thus the true MW of
PS8 is lower than 390k. We model PS8 with a log-normal
distribution with an exponential cut-off with characteris-
tic molar mass 3.5×106 g/mol. The predictions in Fig. 24
use τe = 2 × 10−3 s corresponding to the reference tem-
perature of 160◦C.
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FIG. 23. (a) Dynamic modulus master curves at 150◦C for
two multicomponent PS blends M1 and M2 from Wasserman
and Graessley [61] along with predictions. (b) Results from a
commercial PS with PDI=1.87 from the same reference. The
solid lines are predictions based on the reported polydispersity
and the dashed lines are predictions with PDI=1.03 keeping
MW fixed.

IV. SUMMARY AND OUTLOOK

The algorithm presented in this paper can be consid-
ered as making use of ideas developed in earlier papers
[13, 14, 31] for rheology and chain dynamics in binary
polymer blends, but generalising these to include the
multiple constraint release times for fully polydisperse
systems. Although the form of the algorithm is consistent
with those earlier papers, we have allowed experimental
data to guide choices of parameters, where appropriate.
We have also included suitable cross-overs to describe
early time relaxation and the transition between entan-
gled and unentangled motion. The algorithm has been
tested against linear stress and dielectric relaxation data
for a very broad range of monodisperse, bidisperse and
polydisperse polymer melts. We view the key elements
and developments in the algorithm to be as follows:

• A nested tube structure based broadly on the dy-
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namic dilution picture (see Fig. 1). In addition
to the commonly used thin tube (no dilution),
fat tube (full dilution) and supertube (indicating
stress relaxation by constraint release) we added
two more: an optimal tube for fastest reptation
(along-tube) motion, in section II E; and an “equi-
libration” tube (largest available tube for reptation
or contour length fluctuation), in section II D.

• We reject Eq. 6 for stress relaxation (commonly
used in branched polymer theories, including our
own [25]) in favour of Eqs. 2, 4 and 5 which are
closer to the double reptation [12] picture and to
the expression used by Likhtman and McLeish [9]
for monodisperse material.

• Constraint release is modelled as an immediate
drop in the supertube fraction φST followed by
power law decay (see Fig. 2 and discussion in Sec-
tion II C). This, combined with the equation used
for stress relaxation, is essential for reproducing dif-
ferences in dielectric and stress relaxation times,
and change in relaxation time of short chains when
embedded in long chain matrix (see Appendix A).

• Contour length fluctuation (CLF) proceeds at a
rate determined by the optimal tube for fastest
along-tube motion, but to a depth permitted by lo-
cal equilibration from constraint release (i.e. CLF
in a “fat” tube via motion along a thinner tube [13,
14]), as detailed in Section II F.

• We also re-examined the criterion used for crossover
from CLF to reptation relaxation, in section II G.
Here we found that the criterion used in some ear-
lier models (BoB [25] and Hierarchical [24]) overes-
timated both relaxation due to CLF and the extent
to which CLF accelerates terminal reptation.

The excellent comparison with experimental data sug-
gests that this algorithm can be useful in making predic-
tions for linear rheology of a substantial range of poly-
disperse polymer melts.

Nevertheless, it will be apparent even from the brief
summary above that the model developed is, in several
respects, not compatible with our previous algorithm to
determine linear rheology of branched polymers (the BoB
model [25]) or with the previous work upon which that
algorithm builds. Although designed for branched poly-
mers, the BoB model can be used to predict rheology
of broadly polydisperse linear polymers, but will often
require a different parameterisation to that used in this
paper. Especially for some of the binary blend data used
in the present work, the BoB model will not work. There
is a clear need to revisit theories for branched polymer
relaxation in light of the more recent understanding of in-
teraction between constraint release, contour length fluc-
tuation and reptation emerging from studies of binary
blends.

The computer source code used in generat-
ing the predictions in this paper, executable
and documentation are available for download at
https://github.com/chinmaydaslds/LP2R .
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Appendix A: On double reptation and the expression for
stress relaxation

In this paper we make use of Equations 2, 4 and 5 to
calculate the stress relaxation function, contrasting this
with the equation commonly used in branched polymer
tube theories, Eq. 6. Here, we briefly discuss the dif-
ference between these expressions when applied in the
simple double-reptation [12] limit for binary blends. We
assume a blend with fraction φS short chains with bare
reptation time τS , and fraction φL = 1− φS long chains
with bare reptation time τL. Then, a simplified double
reptation picture [5] can be obtained by assuming both
φ(t) and φST (t) obey

φ(t) = φST (t) =


1 t < τS ,

φL τS < t < τL,

0 t > τL.

(A1)

With dilution exponent 1, this then gives, from Eqs. 4
and 5,

µ(t) = R(t) = φL exp

(
− t

τL

)
+ φS exp

(
− t

τS

)
, (A2)
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and so, using equation 2

G(t)

G0
N

=φ2
L exp

(
− 2t

τL

)
+ φ2

S exp

(
− 2t

τS

)
(A3)

+ 2φLφS exp

(
− t

τL
− t

τS

)
.

although greatly simplified, this has features that
are broadly consistent with experimental observations.
These can be observed by considering different limits as
follows:

1. For pure long (or short) chains, e.g. φL = 1, there
is a factor of two difference between relaxation time
of stress, G(t), and dielectric response, µ(t). such a
difference can be observed in, for example, Figure 5.

2. For pure short chains (φS = 1) the stress relaxation
time is obtained from the second term in Eq. A3,
and is τS/2. In contrast, for short chains in a long
chain matrix (φS � 1 and τL � τS) the short-time
stress relaxation is dominated by the last term in
Eq. A3, with relaxation time close to τS , which is
also the dielectric relaxation time. Such observa-
tions are qualitatively clear, for example, in Fig-
ure 21c and d.

In Equation A3, these two predictions arise due to a com-
bination of using Equations 2, 4 and 5 for the stress re-
laxation, and also having a step drop in φST giving a
substantial amount of constraint release at the timescale
of relaxation of the entangling chains. Although we go
beyond the double reptation approximation, we retain
these features in the theoretical development in the main
body of the paper.

In contrast, using Eq. 6 with Eq. A1 gives:

G(t)

G0
N

= φ2
L exp

(
− t

τL

)
+ (1− φ2

L) exp

(
− t

τS

)
. (A4)

This gives neither the factor of two difference between
stress and dielectric relaxation time for pure chains, nor
the difference in stress relaxation peak for short chains in
long chain matrix. We believe it impossible to reproduce
these key experimental observations using Eq. 6 for stress
relaxation.

Appendix B: Calculation of the dynamic moduli

The dynamic moduli are calculated from the decay of
Φ and ΦST as

G∗ (ω)

G0
N

≡ iω
∫ ∞

0

ds µ (t) R (t) e−s(iω+s)

=

∫
τk

dτk

(
− dφ

dτk

)∫
τm

dτm

(
−dφ

α
ST

dτm

)[
ω2τ2

km

1 + ω2τ2
km

+ i
ωτkm

1 + ω2τ2
km

]
. (B1)

Here, τkm ≡ τkτm/(τk + τm) and the integrals involving
τk, and τm are between zero and infinity. Since φ goes to
zero at the final reptation time τd of the last surviving
polymer, the first integral can be approximated as∫

τk

dτk

(
− dφ

dτk

)
⇒

τk≤τd∑
k

[−∆φ (τk)] . (B2)

Taking account of the long-time power-law decay of
ΦST beyond the terminal reptation time, we divide the
second integral as a sum until τd where we accumulate
values of ΦST at discrete time intervals and an integral
as∫

τm

dτm

(
−dφ

α
ST

dτm

)
⇒

{
τm≤τd∑
m

[−∆φαST (τm)] +

φαST (τd)
√
τd

2

∫ ∞
τd

dτmτ
−3/2
m

}
(B3)

The resulting integrals in the complex modulus allow
closed form expressions as

I ′ ≡
∫ ∞
τd

dτm

(
−dφ

α
ST

dτm

)
ω2τ2

km

1 + ω2τ2
km

=
φαST (τd)

2
ω2τ2

k

∫ ∞
1

√
xdx

ω2τ2
kx

2 + (τk/τd + x)
2

≡ φαST (τd)

2
ω2τ2

k I1

(
τk
τd
, ω2τ2

k

)
, (B4)

and

I ′′ ≡
∫ ∞
τd

dτm

(
−dφ

α
ST

dτm

)
ωτkm

1 + ω2τ2
km

=
φαST (τd)

2
ωτk

∫ ∞
1

dx√
x

(τk/τd + x)

ω2τ2
kx

2 + (τk/τd + x)
2

≡ φαST (τd)

2
ωτk I2

(
τk
τd
, ω2τ2

k

)
. (B5)

For real positive a ≤ 1 and real positive b, the integra-
tions I1(a, b), and I2(a, b) results in

I1(a, b) ≡
∫ ∞

1

√
x dx

(a+ x)2 + bx2

=
1

2
√

2αβa

[
βγ(1 + α)t1

b
− 2
√
a t2

]
; (B6)

I2(a, b) ≡
∫ ∞

1

dx√
x

(a+ x)

(a+ x)2 + bx2

=
1

2
√

2αβa

[
−γβt1 − 2

√
a(1 + α)t2

]
. (B7)

Here, α ≡
√

1 + b, β ≡
√

1 + α, γ ≡
√
a(α− 1),

δ ≡
√
a(α+ 1), t1 ≡ ln

(
a+α+

√
2γ

a+α−
√

2γ

)
, and t2 ≡

tan−1
(

2
√

2αδ
δ2+γ2−2α2

)
.
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